If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2=64x+192
We move all terms to the left:
16x^2-(64x+192)=0
We get rid of parentheses
16x^2-64x-192=0
a = 16; b = -64; c = -192;
Δ = b2-4ac
Δ = -642-4·16·(-192)
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-128}{2*16}=\frac{-64}{32} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+128}{2*16}=\frac{192}{32} =6 $
| x+28+122=180 | | 8n+4n=48 | | 3x=(8x-40 | | x/3=1/2+x/4 | | 129=-8x+3(3-4x | | 4y+6=6y+9 | | 10−6v=−104 | | -7m−10=-9m+2 | | -211=5(6n)-7)-8n | | 5(2x+9)+8(x-3)=327 | | -9y-1=-8y-2 | | 4x+15-x=76 | | 10+6=-4(7x-4) | | -12=24+4x | | 74=2-9u | | -2j+3−4j=-5j+10 | | -7.9+38d=8.4 | | 112=8(-6x+8) | | 6p=5+5p | | s+2625=11 | | 4(3x+5)=-35+7 | | 4(3x+5=-35+7 | | y3+343=0 | | (q+5)(4q+5)=0 | | 4(3x+50=-35+7 | | -4-5(-2x-5)=35+8x | | (4x-1)-(3-2x)=x+3 | | 6(y-4=18 | | 4b−5=7+2b | | 33-6x=9x | | 2x+3(x-3)=21 | | 8(7x-41)=988 |